首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2957篇
  免费   372篇
  国内免费   780篇
  2023年   64篇
  2022年   74篇
  2021年   93篇
  2020年   114篇
  2019年   155篇
  2018年   111篇
  2017年   153篇
  2016年   127篇
  2015年   120篇
  2014年   164篇
  2013年   165篇
  2012年   113篇
  2011年   150篇
  2010年   136篇
  2009年   150篇
  2008年   188篇
  2007年   197篇
  2006年   192篇
  2005年   151篇
  2004年   122篇
  2003年   135篇
  2002年   102篇
  2001年   115篇
  2000年   115篇
  1999年   91篇
  1998年   73篇
  1997年   68篇
  1996年   91篇
  1995年   79篇
  1994年   67篇
  1993年   47篇
  1992年   65篇
  1991年   51篇
  1990年   58篇
  1989年   35篇
  1988年   28篇
  1987年   16篇
  1986年   18篇
  1985年   17篇
  1984年   19篇
  1983年   3篇
  1982年   21篇
  1981年   14篇
  1980年   15篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1974年   4篇
  1973年   3篇
排序方式: 共有4109条查询结果,搜索用时 15 毫秒
91.
Control of mid-sized mammalian predators (hereafter, mesopredators) is sometimes advocated in an attempt to reduce their impact on wildlife populations, particularly economically important (i.e., game) or endangered species. However, mesopredators may play a role in regulating small mammal populations; thus, lethal control of mesopredators may have unintended consequences. The hispid cotton rat (Sigmodon hispidus; hereafter, cotton rat) is one of the most common small mammals in the southeastern United States and is an important prey species for several of the region's predators. Within fire-maintained communities, such as the longleaf pine (Pinus palustris) forests of the Coastal Plain, cotton rat populations dramatically, yet temporarily, decline following prescribed fire. To evaluate the effects of mesopredator removal on cotton rat survival and cause-specific mortality, we conducted a large-scale mesopredator exclusion experiment that incorporated a prescribed fire during the winter of study. Between 18 May 2006 and 20 June 2007, we used radio-telemetry to monitor 252 cotton rats (131 in exclosures and 121 in controls) and documented 184 mortalities. During the 37-week period of monitoring prior to the prescribed fire event, weekly survival of cotton rats was greater in mesopredator exclusion plots. During the 19 weeks following the prescribed fire, there were no differences in weekly survival relative to mesopredator treatment, but fire caused a short-term reduction in weekly survival within both exclosures and controls. Of 36 cotton rats monitored on the date of prescribed fire, 18 were depredated within 1 month, 4 emigrated, and 5 were killed by the fire event. Overall, raptors preyed on cotton rats more in exclosures than in controls, but evidence for compensatory predation (raptor-caused morality greater in exclosures than in controls although survival rates were similar between treatments) only occurred following the prescribed fire event. Our results suggest that managing mesopredators may result in a temporary increase in cotton rat survival, but dormant season prescribed fire removes this effect until well into the following growing season. © 2011 The Wildlife Society.  相似文献   
92.
We evaluated habitat suitability and nest survival of breeding white-headed woodpeckers (Picoides albolarvatus) in unburned forests of central Oregon, USA. Daily nest-survival rate was positively related to maximum daily temperature during the nest interval and to density of large-diameter trees surrounding the nest tree. We developed a niche-based habitat suitability model (partitioned Mahalanobis distance) for nesting white-headed woodpeckers using remotely sensed data. Along with low elevation, high density of large trees, and low slope, our habitat suitability model suggested that interspersion–juxtaposition of low- and high-canopy cover ponderosa pine (Pinus ponderosa) patches was important for nest-site suitability. Cross-validation suggested the model performed adequately for management planning at a scale >1 ha. Evaluation of mapped habitat suitability index (HSI) suggested that the maximum predictive gain (HSI = 0.36), where the number of nest locations are maximized in the smallest proportion of the modeled landscape, provided an objective initial threshold for identification of suitable habitat. However, managers can choose the threshold HSI most appropriate for their purposes (e.g., locating regions of low–moderate suitability that have potential for habitat restoration). Consequently, our habitat suitability model may be useful for managing dry coniferous forests for white-headed woodpeckers in central Oregon; however, model validation is necessary before our model could be applied to other locations. © 2011 The Wildlife Society.  相似文献   
93.
北亚热带马尾松净生产力对气候变化的响应   总被引:6,自引:1,他引:5  
掌握马尾松生产力与气候变化的关系,特别是在马尾松自然分布的北界研究生产力对气候变化的响应具有重要意义,以马尾松自然分布北界的河南鸡公山国家级自然保护区内的老龄马尾松林作为研究对象,根据河南信阳的马尾松生物量与树高胸径的关系,利用样地调查和年轮宽度推算出过去的30a中的生物量和生产力动态,并用当地的温度、湿度、降水、光照以及帕尔默干旱度指数5项气候因子与生产力做相关分析,在此基础上用多元逐步回归得到了气候因子与生产力的回归方程。结果显示:鸡公山马尾松林生物量从1980年的59.00 t/hm2逐步增加到2009年的254.75 t/hm2,30a中平均年净生产力为6.64 t/hm2;气候分析表明年净生产力与气候因子关系较为密切:上年8月降水、当年2月温度、3月湿度以及10月的光照和温度与生产力正相关,当年5月光照、10月的降水和湿度与生产力负相关,当年2月到9月的PDSI都与生产力正相关,并且在6月的相关系数最高。研究表明,北亚热带的马尾松生产力的年际变化主要是气候因素引起的,受当年生长季的长短和生长季的土壤水分可用性限制,在未来该地区升温增湿的条件下马尾松林的生产力可能会升高。  相似文献   
94.
火烧对黔中喀斯特山地马尾松林土壤理化性质的影响   总被引:9,自引:0,他引:9  
张喜  朱军  崔迎春  霍达  王莉莉  吴鹏  陈骏  潘德权  杨春华 《生态学报》2011,31(19):5809-5817
在黔中喀斯特山地马尾松人工次生林内取样分析火烧和对照样地间土壤理化指标的变化,研究了火烧对林地土壤理化性质的影响。结果表明马尾松火烧林地表层土壤毛管孔隙度和总孔隙度升高、最大持水量和最小持水量增加,土壤密度和非毛管孔隙度降低、土壤质量含水量和体积含水量减少;土壤有机质、全N量、全P量、全K量,水解N量、有效P量、速效K量、交换性盐基量和pH值增大,阳离子交换量降低。林火对马尾松林地土壤主要理化指标影响的趋势为或表层土壤影响率大于剖面影响率、或表层土壤影响率小于剖面影响率,不同指标在土壤剖面的变化趋势或增加、或降低,对数或幂函数拟合曲线均达相关显著性水平。火烧和对照样地间的表层土壤理化指标变化主要反映了林火影响,近岩层土壤理化指标变化主要是成土母质在空间上的分异,也受生物的影响。乔木层植株死亡率同表层土壤最大持水量、最小持水量、有机质量和全N量的正相关性显著,同土壤密度的负相关性显著;灌木层植株死亡率同表层土壤密度正相关性显著,同毛管孔隙度、总孔隙度、质量含水量、最大持水量、最小持水量、有机质量、全N量、全P量和速效K量的负相关性达显著或极显著水平;灌木层生物损失量同表层土壤密度和有机质量正相关显著,同速效K量的负相关性显著,枯物层生物损失量同pH值的正相关性显著。火烧马尾松林分平均胸径同表层土壤密度正相关性显著,同毛管孔隙度、总孔隙度、质量含水量、最大持水量、最小持水量和有机质量的负相关性显著。  相似文献   
95.
以立地条件和营林方式相同的约30a林龄油松与云杉人工纯林为对象,测定地表微气候、土壤理化性质以及微生物生物量C、N、P(MBC、MBN、MBP),揭示林分结构、土壤性质与微生物生物量间的关系,以及两林分间的差异性。结果表明:两个林分地表环境荫湿,土壤肥力较低,土壤微生物生物量低,林地土壤碳积累低,土壤生态服务功能不强。相对而言,云杉林比油松林相对湿度大而地表温度低、林地土壤肥力高、土壤微生物生物量高,因此更有利于林地土壤生态服务功能的恢复。综合分析发现,林分结构、土壤养分状况及地表小气候影响着土壤微生物生物量与肥力转换过程,降低乔木冠层密度可以改善地表小气候,为有机物分解与养分归还创造良好的条件,从而改善土壤肥力与林地土壤生态服务功能。  相似文献   
96.
20世纪50年代以来,樟子松(Pinus sylvestris var.mongolica在中国北方干旱半干旱地区沙地广泛引种.近年来一些早期引种的樟子松人工林出现了早衰现象.分析生境水分条件变化、判断樟子松采取何种水分利用策略对于认识其早衰现象很有裨益.因此,本研究利用稳定同位素示踪技术,研究了科尔沁沙地东南缘固定沙丘丘间低地30年生樟子松人工林的水分来源及其利用的季节动态,分析了降水和土壤水分变化对樟子松水分利用的影响,阐明了樟子松与伴生植物(黄柳Salix gordeieril)在水分来源方面的异同.结果表明,樟子松及其主要伴生植物黄柳枝条水的稳定18O同位素组成(δ18O)存在明显的季节变化;樟子松的水分来源主要来自20~ 40 cm或更深土层;樟子松和主要伴生植物黄柳之间存在明显的水分竞争,后者比樟子松先行利用最近较强降水(如降水量>10 mm),从而影响樟子松水源的补给.本研究对于揭示沙地樟子松衰退与水分利用策略的关系具有重要意义.  相似文献   
97.
Aim To understand how the biophysical environment influences patterns of infection by non‐native blister rust (caused by Cronartium ribicola) and mortality caused by native mountain pine beetles (Dendroctonus ponderosae) in whitebark pine (Pinus albicaulis) communities, to determine how these disturbances interact, and to gain insight into how climate change may influence these patterns in the future. Location High‐elevation forests in south‐west Montana, central Idaho, eastern and western Oregon, USA. Methods Stand inventory and dendroecological methods were used to assess stand structure and composition and to reconstruct forest history at sixty 0.1‐ha plots. Patterns of blister rust infection and mountain pine beetle‐caused mortality in whitebark pine trees were examined using nonparametric Kruskal–Wallis ANOVA, Mann–Whitney U‐tests, and Kolmogorov–Smirnov two‐sample tests. Stepwise regression was used to build models of blister rust infection and mountain pine beetle‐related mortality rates based on a suite of biophysical site variables. Results Occurrence of blister rust infections was significantly different among the mountain ranges, with a general gradient of decreasing blister rust occurrence from east to west. Evidence of mountain pine beetle‐caused mortality was identified on 83% of all dead whitebark pine trees and was relatively homogenous across the study area. Blister rust infected trees of all ages and sizes uniformly, while mountain pine beetles infested older, larger trees at all sites. Stepwise regressions explained 64% and 58% of the variance in blister rust infection and beetle‐caused mortality, respectively, indicating that these processes are strongly influenced by the biophysical environment. More open stand structures produced by beetle outbreaks may increase the exposure of surviving whitebark pine trees to blister rust infection. Main conclusions Variability in the patterns of blister rust infection and mountain pine beetle‐caused mortality elucidated the fundamental dynamics of these disturbance agents and suggests that the effects of climate change will be complex in whitebark pine communities and vary across the species’ range. Interactions between blister rust and beetle outbreaks may accelerate declines or facilitate the rise of rust resistance in whitebark pine depending on forest conditions at the time of the outbreak.  相似文献   
98.
1. The functional feeding group approach has been widely used to describe the community structure of benthic invertebrates in relation to organic matter resources. Based on this functional framework, positive interactions between feeding groups (especially shredders and collector‐gatherers) were postulated in the River Continuum Concept. However, relationships with organic matter have been poorly documented for invertebrates living in the hyporheic zone. 2. We hypothesised that the common subterranean amphipod Niphargus rhenorhodanensis would feed on fine particulate organic matter (FPOM), which is more abundant than coarse particulate organic matter (CPOM) in hyporheic habitats, and should be favoured by the occurrence of shredders that produce FPOM from CPOM. 3. We used laboratory experiments to quantify leaf litter processing by N. rhenorhodanensis and a common shredder, the surface amphipod Gammarus roeselii. We estimated rates of feeding and assimilation (using nitrogen stable isotopes) of the two species separately and together to reveal any potential shredder–collector facilitation between them. 4. Measured leaf litter mass loss showed that N. rhenorhodanensis did not act as a shredder, unlike G. roeselii. Organic matter dynamics and 15N/14N ratios in tissues of niphargids indicated that N. rhenorhodanensis was a collector‐gatherer feeding preferentially on FPOM. We also found a positive influence of the gammarid shredders on the assimilation rate of N. rhenorhodanensis, which fed on FPOM produced by the shredders, supporting the hypothesis of a positive interaction between surface shredders and hyporheic collector‐gatherers.  相似文献   
99.
Aim Carbon (C) and nitrogen (N) stoichiometry is a critical indicator of biogeochemical coupling in terrestrial ecosystems. However, our current understanding of C : N stoichiometry is mainly derived from observations across space, and little is known about its dynamics through time. Location Global secondary forests. Methods We examined temporal variations in C : N ratios and scaling relationships between N and C for various ecosystem components (i.e. plant tissue, litter, forest floor and mineral soil) using data extracted from 39 chronosequences in forest ecosystems around the world. Results The C : N ratio in plant tissue, litter, forest floor and mineral soil exhibited large variation across various sequences, with an average of 145.8 ± 9.4 (mean ± SE), 49.9 ± 3.0, 38.2 ± 3.1 and 18.5 ± 0.9, respectively. In most sequences, the plant tissue C : N ratio increased significantly with stand age, while the C : N ratio in litter, forest floor and mineral soil remained relatively constant over the age sequence. N and C scaled isometrically (i.e. the slope of the relationship between log‐transformed N and C is not significantly different from 1.0) in litter, forest floor and mineral soil both within and across sequences, but not in plant tissue either within or across sequences. The C : N ratio was larger in coniferous forests than in broadleaf forests and in temperate forests than in tropical forests. In contrast, the N–C scaling slope did not reveal significant differences either between coniferous and broadleaf forests or between temperate and tropical forests. Main conclusions These results suggest that C and N become decoupled in plants but remain coupled in other ecosystem components during stand development.  相似文献   
100.
We used the ecosystem process model Biome‐BGC to simulate the effects of harvest and residue removal management scenarios on soil carbon (C), available soil nitrogen (N), net primary production (NPP), and net ecosystem production (NEP) in jack pine (Pinus banksiana Lamb.) and sugar maple (Acer saccharum Marsh) ecosystems in northern Wisconsin, USA. To assess harvest effects, we simulated short (50‐year) and long (100‐year) harvest intervals, high (clear‐cut) and low (selective) harvest intensities, and three levels of residue retention (15%, 25%, and 35%) over a 500‐year period. The model simulation of NPP, soil C accumulation, and NEP agreed reasonably well with biometric and eddy‐covariance measurements of these two ecosystems. The more intensive (50‐year rotation clear‐cuts with low residue retention) harvest scenarios tended to have the greatest NEP (420 and 678 t C ha?1 for the 500‐year interval for jack pine and sugar maple, respectively). All the harvest scenarios decreased mineral soil C and available mineral soil N content relative to the no‐harvest scenario for jack pine and sugar maple. The rate of change in mineral soil C decreased the greatest in the most intensive biomass removal scenarios (?0.012 and ?0.072 t C ha?1 yr?1 relative to no‐harvest for jack pine and sugar maple, respectively) and the smallest decrease was observed in the least intensive biomass removal scenarios (?0.002 and ?0.009 t C ha?1 yr?1 relative to no‐harvest for jack pine and sugar maple, respectively). The more intensive biomass removal harvest scenarios in sugar maple significantly decreased peak productivity (NPP) in the simulation period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号